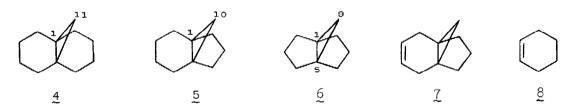

Propellanes. XVIII. Free Radical Bromination in the Dark

Philip Warner,^{1*} Richard LaRose and Thomas Schleis Department of Chemistry, Iowa State University, Ames, Iowa 50011


(Received in USA 20 September 1976; received in UK for publication 19 October 1976)

Skell² has found that the low temperature (-78°) photoinduced bromination of various alkyl-cyclopropanes proceeds via a radical mechanism. Particularly convincing was the inhibition of bromination in the presence of <u>iso-amyl-</u> nitrite (iAmONO). In the case of <u>1</u>, bromination proceeded slowly in the dark at -78°, but was inhibited by added iAmONO. Lambert³ recently reported that methylcyclopropanes brominate in the dark at 0° via an ionic process, although radical pathways do play a small role when uninhibited. We now report studies on propellanic cyclopropanes which further implicate free radical chains in dark, low temperature brominations.

Wiberg⁴ has already implicated radicals in the bromination of [3.2.1] propellane (2), wherefrom a mixture of halides 3a and 3b was obtained. We have

studied the bromination of [4.4.1]propellane (4),⁵ [4.3.1]propellane (5),⁶ [3.3.1]propellane (6),⁷ [4.3.1]propell-3-ene (7)⁶ and cyclohexene (8).

In order to show that 4, 5 and 6 brominate in the dark, experiments were performed, in a dark room, in which Br_2/CH_2Cl_2 (l eq.) was added to the propellane in CH_2Cl_2 , the resulting mixture shaken for 1 minute, and 10 eq. 8then added to quench any excess Br_2 , all at -78° . Pmr examination of the consequent reaction mixture revealed that each propellane had completely disappeared. In qualitative experiments in a dimly lit room, 4, 5 and 6 each appeared to react instantaneously with Br_2 . The bromides resulting from 4, 5 and $\underline{6}$ were only briefly investigated; pmr analysis indicated that $\underline{4}$ and $\underline{5}$ reacted mainly by side bond $(C_1-C_{11} \text{ and } C_1-C_{10})$ cleavage, whereas $\underline{6}$ apparently underwent both side (C_1-C_9) and central bond (C_1-C_5) cleavage. Of course $\underline{7}$ brominates at the double bond.⁶

Since a radical mechanism was suspected, iAmONO was utilized as an inhibitor. Typically, 4, 5 or 6 was dissolved in CH_2Cl_2 ([propellane] = 0.06-0.25<u>M</u>) along with 2 to 4 eq. iAmONO.⁸ One eq. Br₂ was then added to the cold (-78°) solution. After <u>ca</u>. 3 min., excess 8 was added to quench the reaction. In every case, the propellane was largely or wholly recovered. Contrariwise, when the bromination of 7 was performed in the presence of 3 eq. iAmONO, followed by a cyclohexene quench, no 7 was recovered. Thus (if 7 does not brominate much faster than 8, vide infra) the bromination of the double bond of 7 is mechanistically distinct from that of the cyclopropane rings of 4-6.

Further evidence for a radical chain bromination was uncovered during initial attempts to measure relative bromination rates. Thus when 4 was treated with 0.19 eq. Br₂ or when 5 was treated with 0.17 eq. Br₂ in CH₂Cl₂ (-78°) , no propellane remained when the reaction mixture was examined by pmr. In the case of 6, reaction with 0.48 eq. Br₂ left only 46% 6, which is not too different from the expected 52%. The chains are apparently quite short for 6. These results are in accord with Wiberg's findings for 2.

Competitive brominations (at -78°) were conveniently carried out in CS_2 solution. The disappearance of starting materials was analyzed by pmr (p-dibromobenzene as internal standard). The relative rates measured (or estimated) are given in Table I. As expected, 8 reacted slightly faster than 7. The reactivity order of 4, 5 and 6 was in accord with predictions based on consideration of eclipsing interactions as a bromine atom approaches the three-membered ring.

We lastly explored the possibility that iAmONO prevented bromination by inhibiting the formation of a catalytic amount of HBr, which might otherwise initiate a cationic chain reaction. Skell¹⁰ has found that HBr can be involved in cyclopropane to propylene conversions in dark brominations at higher temperatures (0°). We found that when Br₂ was added to <u>ca</u>. 1 eq. HBr (as an HBr/CH₂Cl₂ solution), 5 and 2 eq. iAmONO (CH₂Cl₂, -78°), followed by a cyclohexene quench, the propellane was recovered, but the cyclohexene was brominated. Again, a clear dichotomy between olefin and cyclopropane bromination was apparent. It also seems unlikely that HBr is involved in these low temperature propellane brominations. No. 49

In conclusion, propellanes 4, 5 and 6, as well as the smaller ones studied by us⁹ and Wiberg,⁴ undergo rapid, thermally initiated, low temper-ature radical chain addition of bromine to their cyclopropane rings.

Table I. Some relative bromination rates (CS_2 , -78°).

Compound	k _{rel}	^k rel	k rel
8	2.17±0.77		
I	(1.00)		2 -≥ 10 ^b
<u>4</u>		>10 ^a	
5		(1.00)	(1.00)
6		0.47±0.11	

a 4 brominated too rapidly to be measured vs. 5;

b this rate was not measured (peak overlap makes pmr analysis difficult), but is a guess based on the fact that the double bond of 7 must react at least 10 times faster than its cyclopropane ring, but the cyclopropane ring of 5 may react faster than that of 7 due to an inductive effect of the double bond in 7.

References and Notes

1. Fellow of the Alfred P. Sloan Foundation, 1976-8.

- 2. K. J. Shea and P. S. Skell, J. Am. Chem. Soc., 95, 6728 (1973).
- 3. J. B. Lambert and K. Kobayashi, J. Org. Chem., 41, 571 (1976).
- 4. K. B. Wiberg and G. J. Burgmaier, <u>J. Am. Chem. Soc</u>., 94, 7396 (1972).
- J. W. Rowe, A. Melera, D. Arigoni, O. Jeger and L. Ruzicka, <u>Helv. Chim.</u> <u>Acta</u>, <u>40</u>, 1 (1957).
- E. Vogel, W. Wiedemann, H. D. Roth, J. Eimer and H. Günther, <u>Liebigs Ann.</u> <u>Chem.</u>, 759, 1 (1972).

- 7. P. Warner, R. LaRose and T. Schleis, <u>Tetrahedron Lett</u>., 1409 (1974).
- 8. Smaller amounts of iAmONO produced a slower reaction, but not complete inhibition. Indeed, for i,⁹ even 5 eq. iAmONO did not prevent bromination of the cyclopropane ring!

- 9. P. Warner and R. LaRose, Tetrahedron Lett., 2141 (1972).
- 10. J. C. Day, K. J. Shea and P. S. Skell, <u>J. Am. Chem. Soc.</u>, <u>95</u>, 5089 (1974).